

Distribution Statement A: Approved for Public Release

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Enhancing Training Effectiveness of Legacy Training Products for Millennials

Susan Harkrider

Night Vision and Electronic Sensors Directorate

Samuel S. Monfort

KINEX, INC.

Target Identification & Classification

- Target identification and classification key task for Army personnel;
- Identifying diverse targets can be difficult in ideal circumstances; moreso under poor visibility (FLIR, etc.)

Legacy Training Products

- Recognition of Vehicles (ROC) training program (Rierson & Ahrens, 2006)
- Present soldiers with static imagery; post-training quiz to assess retention

Millennial Learners

- Effective training: matching information presentation with expectations/needs of trainee
- "Millennial" learners prefer interactivity, greater involvement of technology (Mangold, 2007; Merritt, 2002)
- Experiential learning: less PowerPoint (Raines, 2002)

"Serious Games"

- Interactive video-games may address expectations of Millennial learners
- Interest in Serious Games as learning tool growing (Ferguson, 2007)
- Information presented in dynamic, captivating way; greater engagement of trainees = more learning (Raines, 2002)
- Review of Serious Games: more learning and long-term retention than traditional methods (Wouters, van Nimwegen, van Oostendorp, & van der Spek, 2013)
- Serious games uniquely-suited to Millennials?

Updating ROC Legacy Training

• Transition from static imagery to interactive 3dimensional models

Updating ROC Legacy Training

• Transition from simple interactions (gradual zoom) to complex simulation-based engagements

Experimentation

- Experimental protocol to compare two training programs: legacy (ROC-V) and new (CombatID)
- Goals two-fold:
- Estimate training efficacy of new game-based platform;
 Similar means of presentation, but validation still required
- 2. Compare self-reported trainee <u>enjoyment</u>, <u>perceived usefulness</u> <u>of training</u>, and <u>mental workload</u> across platforms.
 - More enjoyment & perceived usefulness = more engaged;
 - > More engaged = greater retention; (McQuiggan, Lee, & Lester, 2007)
 - Less workload = greater learning potential (Berka et al., 2007)

Method

- Three training modules in each platform: vehicle, firearm, and dynamic.
 - Vehicle: Memorize set of 33 vehicles (either static imagery or 3D models);
 - Firearm: Memorize set of 12 firearms (either non-interactive videos or 3D models);
 - Dynamic: ROC-V "zoomed in" on crude 3D model, participant must identify; CombatID portrayed simulated patrol through hostile village

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Method Overview

Asterisks represent self-report intervals: enjoyment and mental workload

Results

- <u>Goal 1</u>: Estimate training efficacy of game-based platform
 - Comparable performance for both training programs with slight (non-significant) advantage to legacy training product;
 - Baseline differences that are sustained over time (differences across groups would be minimized with larger sample)

Results

- <u>Goal 2</u>: Compare self-reported trainee <u>enjoyment</u>, <u>perceived</u> <u>usefulness of training</u>, and <u>mental workload</u> across platforms
 - Comparable workload, fun, and perceived usefulness for both training programs;
 - Small differences favoring CombatID

Role of Fun in Training

- Enjoyable training may promote engagement;
- Engaged participants may be more receptive to the usefulness of the training, resulting in greater test scores

Role of Fun in Training

• Result: fun associated with usefulness; presence of both associated with greater test scores

Discussion: Overall Accuracy

- For the most part, there were no differences between training conditions;
- Both training protocols resulted in greater performance;
- New training program is likely (at least) sufficient

Discussion: Cognitive Resources

- Cognitive resources are limited; sustained mental effort drains from a limited supply (Baumeister, Muraven, & Tice, 2000; Warm, Parasuraman, & Matthews, 2008)
- Training ought to maximize results while minimizing demands on trainees
- Non-significant differences, but small effect favoring CombatID; future investigation should explore this effect

Discussion: Perceived Fun

- Millennials less likely to attend to non-interactive lectures;
- Our trainees who viewed programs as both fun and useful achieved higher scores;
- New CombatID may be uniquely able to leverage this effect among Millennials, whose expectations differ from past generations'

Discussion: Future Development

- Current CombatID version limited in scope and capability;
- New requirements:
 - Greater scope of data collection;
 - More customizability (number of targets, frequency of targets, hostility of targets, etc.)
 - Computer adaptive testing: difficulty adapts to individual operator needs (cf. SAT/GRE)

Conclusion

- We presented preliminary validation efforts for new gamebased training protocol (CombatID);
- CombatID trainees reported slightly more enjoyment and perceived usefulness of training;
- Greater perceptions of enjoyment and usefulness related to higher post-test scores.

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Thank You; Questions?

References

- Baumeister, R.F., Muraven, M., & Tice, D.M. (2000). Ego depletion: A resource model of volition, self-regulation, and controlled processing. *Social Cognition*, 18(2), 130.
- Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T., ... & Craven, P.L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. *Aviation, Space, and Environmental Medicine*, 78(1), B231-B244.
- Ferguson, C.J. (2007). The good, the bad, and the ugly: A meta-analytic review of positive and negative effects of violent video games. *Psychiatric Quarterly*, 78, 309-316.
- Raines, C. (2002). Managing Millennials: The sourcebook for a new workplace, Menlo Park: California.
- Mangold, K. (2007). Educating a new generation: Teaching baby boomer faculty about Millennial students. *Nurse Educator*, *32*, 21-23.
- Merritt, S.R. (2002). Generation Y: A perspective on America's next generation and their impact on higher education. *The Serials Librarian*, 42(1-2), 41-50.
- McQuiggan, S., Lee., S., & Lester, J. (2007). Early prediction of student frustration. *Affective Computing and Intelligent Interaction*, 698-709.
- Warm, J.S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, *50*(3), 433-441.
- Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. *Journal of Educational Psychology*, 105(2), 249.

